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SUMMARY
Visual input during natural behavior is highly dependent on movements of the eyes and head, but how infor-
mation about eye and head position is integrated with visual processing during free movement is unknown, as
visual physiology is generally performed under head fixation. To address this, we performed single-unit elec-
trophysiology in V1 of freely moving mice while simultaneously measuring the mouse’s eye position, head
orientation, and the visual scene from themouse’s perspective. From thesemeasures, wemapped spatiotem-
poral receptive fields during freemovement basedon the gaze-corrected visual input. Furthermore, we found a
significant fraction of neurons tuned for eye and head position, and these signals were integrated with visual
responses through a multiplicative mechanism in the majority of modulated neurons. These results provide
new insight into coding in the mouse V1 and, more generally, provide a paradigm for investigating visual phys-
iology under natural conditions, including active sensing and ethological behavior.
INTRODUCTION

A key aspect of natural behavior is movement through the envi-

ronment, which has profound impacts on the incoming sensory

information (Gibson, 1979). In vision, movements of the eyes

and head due to locomotion and orienting transform the visual

scene in ways that are potentially both beneficial, by providing

additional visual cues, and detrimental, by introducing con-

founds due to self-movement. By accounting for movement,

the brain can therefore extract more complete and robust infor-

mation to guide visual perception and behavior. Accordingly, a

number of studies have demonstrated the impact of movement

on activity in the cortex (Parker et al., 2020; Froudarakis et al.,

2019; Busse et al., 2017). In head-fixed mice, locomotion on a

treadmill increases the gain of visual responses (Niell and

Stryker, 2010) and modifies spatial integration (Ayaz et al.,

2013) in the primary visual cortex (V1), while passive rotation

generates vestibular signals (Bouvier et al., 2020; Vélez-Fort

et al., 2018). Likewise, in freely movingmice and rats, V1 neurons

show robust responses to head and eye movements and head

orientation tuning (Guitchounts et al., 2020a, 2020b; Meyer

et al., 2018).

However, it is unknown how information about eye and head

position is integrated into visual processing during natural move-

ment because studies of visual processing are generally per-

formed during head fixation to allow the presentation of

controlled stimuli, while natural eye and head movements

require a mouse to be freely moving. Quantifying visual coding
in freely moving animals requires determining the visual input,

which is no longer under the experimenter’s control and is

dependent on both the visual scene from the mouse’s perspec-

tive and its eye position. In addition, natural scenes, particularly

during free movement, pose difficulties for data analysis

because they contain strong spatial and temporal correlations

and are not uniformly sampled because they are under the ani-

mal’s control. Whether V1 receptive fields (RFs) show similar

properties under freely moving and restrained conditions is a

question that goes back to the origins of cortical visual physi-

ology (Hubel, 1959; Hubel and Wiesel, 1959).

To address the experimental challenge, we combined high

density silicon probe recordings with miniature head-mounted

cameras (Michaiel et al., 2020; Meyer et al., 2018; Sattler and

Wehr, 2021), with one camera aimed outward to capture the vi-

sual scene from the mouse’s perspective (‘‘world camera’’), a

second camera aimed at the eye to measure pupil position

(‘‘eye camera’’), and an inertial measurement unit (IMU) to quan-

tify head orientation. To address the data analysis challenge, we

implemented a paradigm to correct the world camera video

based on measured eye movements with a shifter network

(Yates et al., 2021;Walker et al., 2019) and then used this as input

to a generalized linear model (GLM) to predict neural activity (Pil-

low et al., 2008).

Using this approach, we first quantified the visual encoding

alone during free movement, in terms of linear spatiotemporal

RFs from the GLM fit. For many units, the RF measured during

freemovement is similar to the RFmeasured with standard white
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Figure 1. Visual physiology in freely moving mice

(A) Schematic of recording preparation, including 128-channel linear silicon probe for electrophysiological recording in V1 (yellow), miniature cameras for

recording the mouse’s eye position (magenta), and visual scene (blue), and inertial measurement unit for measuring head orientation (green).

(B) Experimental design: controlled visual stimuli were first presented to the animal while head-fixed, then the same neurons were recorded under conditions of

free movement.

(C) Sample data from a 15 s period during freemovement showing (from top) visual scene, horizontal and vertical eye position, head pitch and roll, and a raster plot

of over 100 units. Note that the animal began moving at �4 s, accompanied by a shift in the dynamics of neural activity.
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noise stimuli during head fixation within the same experiment,

providing confirmation of this approach. We then extended the

encodingmodel to incorporate eye position and head orientation

and found that these generally provide a multiplicative gain on

the visual response. Together, this work provides new insights

into the mechanisms of visual coding in V1 during natural move-

ment and opens the door to studying the neural basis of behavior

under ethological conditions.

RESULTS

Visual physiology in freely moving mice
In order to study how visual processing in V1 incorporates self-

motion, we developed a system to perform visual physiology

studies in freely moving mice (Figure 1A). To estimate the visual

input reaching the retina, a forward-facing world camera re-

corded a portion (�120�) of the visual scene available to the right

eye. A secondminiature camera aimed at the right eyemeasured

pupil position, and an IMU tracked head orientation. Finally, a

drivable linear silicon probe implanted in the left V1 recorded
2 Neuron 110, 1–10, December 7, 2022
the activity of up to 100+ single units across layers. The same

neurons were first recorded under head-fixed conditions to

perform white noise RF mapping and then under conditions of

free movement (Figure 1B). Well isolated units were highly stable

across the two conditions (Figure S1; STARMethods). Figure 1C

and Video S1 show example data obtained using this system in a

freely moving animal. Mice were allowed to explore a visually

complex arena containing black and white blocks (three-dimen-

sional sparse noise), static white noise and oriented gratings on

the walls, and a monitor displaying moving spots. After several

days of habituation, mice were active for a majority of the time

spent in the arena (82%), with an average movement speed of

2.6 cm/s, which is comparable to other similar studies (see

STAR Methods; Juavinett et al., 2019; Meyer et al., 2018).

A generalized linear model accurately estimates
spatiotemporal receptive fields during free movement
To quantify visual coding during free movement, both the neural

activity and the corresponding visual input are needed. The

world camera captures the visual scene from a head-centric
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Figure 2. A generalized linear model accurately estimates spatiotemporal receptive fields during free movement

(A) Schematic of processing pipeline. Visual and positional information is used as input into the shifter network, which outputs parameters for an affine trans-

formation of the world camera image. The transformed image frame is then used as the input to the GLM network to predict neural activity.

(B) Four example freely moving spatiotemporal visual receptive fields. Scale bar for RFs represents 10�.
(C) Example actual and predicted smoothed (2 s window) firing rates for unit 3 in (B).

(D) Histogram of correlation coefficients (cc) for the population of units recorded. Average cc shown as gray dashed line.

(E) Example of a freely moving RF with the shifter network off (left) and on (right) at a time lag of 0 ms. Colormap same as (B).

(F) Scatter plot showing cc of predicted versus actual firing rate for all units with the shifter network off versus on. Red point is the unit shown in (E).

(G) Example receptive field calculated via STA (left) versus GLM (right).

(H) Scatter plot showing cc of predicted versus actual firing rate for all units, as calculated from STA or GLM. Red point is the unit shown in (G).
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point of view, while the visual input needed is in a retinocentric

perspective. To tackle this problem, we used a shifter network

to correct the world camera video for eye movements (Walker

et al., 2019; Yates et al., 2021). The shifter network takes as input

the horizontal (theta) and vertical (phi) eye angle, along with the

vertical head orientation (pitch) to approximate cyclotorsion

(Wallace et al., 2013), and outputs the affine transformation for

horizontal and vertical translation and rotation, respectively (Fig-

ure S2). We trained the shifter network and a GLM end-to-end

with a rectified linear activation function to determine the camera

correction parameters that best enable prediction of neural ac-

tivity for each recording session (Figure 2A). All GLM fits in this

study were cross-validated using train-test splits (see STAR

Methods for details). This analysis draws on the relatively large

numbers of simultaneously recorded units, as it determines the

best shift parameters by maximizing fits across all neurons,
thereby determining the general parameters of the eye camera

to world camera transformation rather than being tailored to in-

dividual neurons.

The outputs of the shifter network (Figures S2A–S2C) show

that it converts the two axes of eye rotation (in degrees) into a

continuous and approximately orthogonal combination of hori-

zontal and vertical shifts of the worldcam video (in pixels), as ex-

pected to compensate for the alignment of the horizontal and

vertical axes of the eye and world cameras. These outputs

were also consistent in cross-validation across subsets of the

data (coefficient of determination R2, dx = 0.846, dy = 0.792,

da = 0.945; Figures S2A–S2C). When the shifts were applied to

the raw world camera video it had the qualitative effect of stabi-

lizing the visual scene in between rapid gaze shifts, as would be

expected from the vestibulo-ocular reflex and ‘‘saccade-and-

fixate’’ eye movement pattern described previously in mice
Neuron 110, 1–10, December 7, 2022 3
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Figure 3. Comparison of receptive fields measured under freely moving versus head-fixed conditions

(A) Fraction of units that were active (>1 Hz firing rate) and that had significant fits for predicting firing rate, in head-fixed and freely moving conditions.

(B) Example spatial receptive fields measured during free movement (top) and using a white noise mapping stimulus while head-fixed (bottom) at time lag of 0ms.

Scale bar in top left is 10�.
(C) Histogram of correlation coefficients between freely moving and head-fixed RFs. Black color indicates units that fall outside two standard deviations of the

shuffle distribution. Arrows indicate locations in the distribution, for example, units in (A).
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(Video S2; Meyer et al., 2020; Michaiel et al., 2020). We quanti-

fied this by computing the total horizontal and vertical displace-

ment of the raw and shifted world camera video based on image

registration between sequential frames. When corrected for eye

position, continuous motion of the image is converted into the

step-like pattern of saccade-and-fixate (Figure S2D) and the im-

age is stabilized to within 1� during the fixations (Figures S2E and

S2F; Michaiel et al., 2020). This eye-corrected retinocentric im-

agewas then used as input for theGLMnetwork to predict neural

activity in subsequent analyses.

We estimated spatiotemporal RFs during free movement us-

ing a GLM to predict single-unit activity from the corrected world

camera data. Single-unit RFs measured during free movement

had clear on and off sub-regions and a transient temporal

response (Figure 2B). To our knowledge, these are the first visual

RFs measured from a freely moving animal. It should be noted

that the temporal response is still broader than would be ex-

pected, which likely reflects the fact that the GLM cannot fully

account for strong temporal correlations in the visual input.

Furthermore, the GLM predicted the continuous time-varying

firing rate of units during free movement (Figure 2C). Across

the population of neurons recorded (N = 268 units, 4 animals),

neural activity predicted from the corrected world camera data

was correlated with the actual continuous firing rate (correlation

coefficient [cc] mean 0.28, max 0.69; Figure 2D). These values

are on par with those obtained from mapping V1 RFs in awake

and anesthetized head-fixed animals (Carandini et al., 2005).

To demonstrate the impact of correcting the visual input for

eye movements, we computed RFs from the raw, uncorrected

world camera data. This resulted in single-unit RFs becoming

blurred and reduced the ability to predict neural activity

(Figures 2E and 2F; shifter on versus off, p = 8.17e�23, paired

t test). Nonetheless, it is notable that the overall improvement

was modest (mean increase in cc = 0.06), and although some

units required the shifter network, many units maintained a

similar ability to predict firing rate even without the shifter.

This is perhaps due to the large size of RFs relative to the

amplitude of eye movements in the mouse (see discussion). To

determine the relative benefit of the GLM approach relative

to a simpler reverse correlation spike-triggered average (Chi-
4 Neuron 110, 1–10, December 7, 2022
chilnisky, 2001), we compared RFs and ability to predict firing

rate from these two methods (Figures 2G and 2H). RFs from

the spike-triggered average (STA) were much broader and ap-

peared to reflect structure from the environment (Figure 2G),

which was expected because the STA will not account for

spatiotemporal correlations in the input. Correspondingly, the

STA performed much worse than the GLM in predicting neural

activity (Figure 2H; p = 2e�93). Finally, as an additional verifica-

tion that the GLM method is able to accurately reconstruct RFs

from limited data and that natural scene statistics are not biasing

the RF estimates, we simulated neural activity based on Gabor

RFs applied to the world camera data. The results demonstrate

that the GLM can reconstruct simulated RFs with high accuracy,

resulting in reconstructed RFs that are both qualitatively and

quantitatively similar to the original (Figures S2F and S2G).

Comparison of receptive fields measured under freely
moving versus head-fixed conditions
To determine whether RFs measured during free movement

were comparable to those measured using traditional visual

physiologymethods, we compared themwith RFsmeasured us-

ing awhite noise stimulus under head-fixed conditions. The large

majority of units were active (mean rate >1 Hz) during each of

these conditions (Figure 3A), and in each condition, roughly

half the units had a fit that significantly predicted neural activity,

with slightly more in the freely moving condition (Figure 3A).

Overall, many neurons that had a clear white noise RF also had

a clear RF from freely moving data (Figure 3B), which closely

matched in spatial location, polarity, and number of sub-regions.

To quantitatively compare RFs, we calculated the pixel-wise cc

between them. To provide a baseline for this metric, we first per-

formed a cross-validation test-retest by comparing the RFs from

the first and second half of each recording separately (Figure S3).

The mean test-retest cc was 0.46 for head-fixed and 0.58 and

freely moving. We considered a unit to have a robust test-retest

RF if this pixel-wise cc was greater than 0.5 (Figure S3C), and

then evaluated the similarity of RFs for units that had robust

fits in both conditions. The distribution of ccs between head-

fixed and freely moving RFs for these units (Figure 3C) shows a

strong correspondence for RFs across the two conditions
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(Figure 3C; 74% of units had a significant cc versus shuffled

data). Taken together, these results show that for the units that

had clearly defined RFs in both conditions, RFs measured with

freelymoving visual physiology are similar to thosemeasured us-

ing traditional methods, despite the dramatically different visual

input and behavior between these two conditions.

V1 integrates visual and positional signals
Studies in head-fixedmice have shown themajor impact of loco-

motion and arousal on activity in the visual cortex (Busse et al.,

2017; Niell and Stryker, 2010; Ayaz et al., 2013; Vinck et al.,

2015). However, the impact of postural variables such as head

position and eye position are not easily studied in head-fixed

conditions, particularly because eye movements are closely

coupled to head movement (Meyer et al., 2020; Michaiel et al.,

2020). We therefore sought to determine whether and how

eye/head position modulate V1 neural activity during free move-

ment, based on measurement of pupil position from the eye

camera and head orientation from the IMU. Strikingly, many

single units showed tuning for eye position and/or head orienta-

tion, with 25% (66/268) of units having a modulation index [MI;

(ratemax � ratemin)/(ratemax + ratemin)] greater than 0.33 for at

least one positional parameter, which equates to a 2-fold change

in firing rate (Figures 4A–4C). To determine whether single-unit

activity was better explained by visual input or eye/head posi-

tion, we fit GLMs using either one as input. For most units

(189/268 units, 71%), firing rate was better explained by a visual

model, although the activity of some units was better explained

by eye/head position (Figures 4D and 4E; 78/268 units, 29%). It

should be noted that the units that were better fit by positional

model might nonetheless be better described by a more elabo-

rate visual model.

To gain a qualitative understanding of how V1 neurons might

combine visual and positional information, we plotted predicted

firing rates from visual-only GLM fits against the actual firing

rates, binned into quartiles based on eye/head position (example

in Figure 4F). Although the data should lie on the unity line in the

absence of positional modulation, additive integration would

shift the entire curve up or down and multiplicative integration

would cause a slope change. Across the population of recorded

neurons, many units showed evidence of gain modulation that

tended to appear more multiplicative than additive.

To directly quantify the integration of visual and eye/head po-

sitional information, and in particular to test whether this was ad-

ditive or multiplicative, we trained two additional models: addi-

tive and multiplicative joint-encoding of visual and positional

information. To train the joint fit of visual and positional signals,

we froze the weights of the initial visual fits and trained positional

weights that either added to or multiplied the visual signal for

each unit (Figure 4G). Incorporating eye position and head orien-

tation enables the model to more accurately predict large

changes in the firing rate (Figure 4H). The inclusion of positional

information almost universally improved predicted neural activity

compared with visual fits alone (Figure 4I). For units that had a

significant visual fit (cc > 0.22, cross-validated, N = 173 units),

incorporating positional information resulted in an average frac-

tional increase in correlation of 34% (0.07 average increase in

cc). Multiplicatively combining visual and positional signals
generated predictions that more closely matched actual firing

rates than an additive combination in a majority of units

(Figures 4J and 4K; p = 0.0005, one sample t test ccmult � ccadd
for units with significant visual-only fits versus Gaussian distribu-

tion with mean = 0), suggesting that visual and positional signals

in themouse V1 aremore often integrated nonlinearly, consistent

with previous studies in primate visual and parietal cortices (An-

dersen and Mountcastle, 1983; Morris and Krekelberg, 2019).

To further characterize the head and eye positional modula-

tions, we performed additional experiments recording V1 activity

during free movement in nearly total darkness, followed by

recording in the standard light condition. A significant fraction

of neurons were modulated by at least 2:1 in the dark

(Figures S4A and S4B; dark: 17%, 41/241; light: 31%, 75/241

units). Comparing the degree of modulation in the light versus

dark for individual units revealed that the degree of tuning often

shifted (Figure S4C), with some increasing their positional tuning

(consistent with an additive modulation that has a proportionally

larger effect in the absence of visual drive) and others decreasing

their positional tuning (consistent with a multiplicative modula-

tion that is diminished in the absence of a visual signal to

multiply). In addition, to test whether positional modulation might

result from the abrupt transition from head-fixed recordings to

free movement, we compared the degree of modulation during

the first and second half of free movement sessions and found

no consistent change (Figure S4D). Finally, to test whether there

was a bias in tuning for specific eye/head positions (e.g., upward

versus downward pitch), we examined the weights of the posi-

tion fits, which showed distributions centered around zero (Fig-

ure S4E), indicating that tuning for both directions was present

for all positional parameters across the population.

Many response properties have been shown to vary across the

cell types and layers of mouse V1 (Niell and Scanziani, 2021).

Separating recorded units into putatively excitatory or inhibitory,

based on spike waveform as performed previously (Niell and

Stryker, 2008), demonstrated that the visual fit performed better

than head/eye position for putative excitatory neurons, while the

contributions were roughly equal for putative inhibitory cells (Fig-

ure S4F). This may be explained by the fact that putative excit-

atory neurons in themouse V1 havemore linear visual responses

(Niell and Stryker, 2008). We also examined whether the contri-

bution of visual versus positional information varied by laminar

depth and found no clear dependence (Figures S4G and S4H).

Finally, we examined the role of two factors that are known to

modulate activity in the mouse V1: locomotor speed and pupil

diameter (Vinck et al., 2015; Niell and Stryker, 2010; Reimer

et al., 2014). It is important to note that our GLM analysis ex-

cludes periods when the head is completely still, as that leads

to dramatic over-representation of specific visual inputs and pre-

sents a confound in fitting the data. Therefore, the results pre-

sented above do not include the dramatic shift from non-alert/

stationary to alert/moving that has been extensively studied

(McGinley et al., 2015). Furthermore, changes in locomotor

speed during free movement are associated with other changes

(e.g., optic flow) that do not occur under head-fixed locomotion;

thus, the model weights may represent other factors besides

locomotion per se. Nonetheless, we find that including speed

and pupil in the fit does indeed predict a part of the neural activity
Neuron 110, 1–10, December 7, 2022 5
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Figure 4. V1 neurons integrate visual and positional signals
(A) Overlay of vertical eye angle (phi; gray) and the smoothed firing rate of an example unit (black).

(B) Example tuning curve for head pitch. Colored points denote the quartiles of phi corresponding to (F).

(C) Scatter of the modulation indices for eye position and head orientation (N = 268 units, 4 animals). Numbers at the top of the plot represent the fraction of units

with significant tuning.

(D) Same unit as (A). Example trace of smoothed firing rates from neural recordings and predictions from position-only and visual-only fits.

(E) Scatter plot of cc for position-only and visual-only fits for all units.

(F) Gain curve for the same unit in (A) and (C). Modulation of the actual firing rates based on phi indicated by color.

(G) Schematic of joint visual and positional input training.

(H) Same unit as (A), (C), and (E). Smoothed traces of the firing rates from the data, additive and multiplicative fits.

(I) Correlation coefficient for visual-only versus joint fits. Each point is one unit, color coded for the joint fit that performed best.

(J) Comparison of additive and multiplicative fits for each unit. Units characterized as multiplicative are to the right of the vertical dashed line, while additive ones

are to the left. Horizontal dashed line represents threshold set for the visual fit, as in the absence of a predictive visual fit, a multiplicative modulation will be similar

to an additive modulation.

(K) Histogram of the difference in cc between additive and multiplicative models. The visual threshold from (I) was applied to the data.

(L) Explained variance (r2) for position only (pos), speed and pupil only (sp), visual only (vis), multiplicative with eye/head position (mul_pos), multiplicative with

speed and pupil (mul_sp), and multiplicative with eye/head position, speed, and pupil (mul_all).

(M) The fraction of contribution of the weights for multiplicative fits with eye/head position, speed (spd), and pupil (pup).

(N) Same as (M) but summing together the contribution for eye/head position.
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(Figure 4L). However, this does not occlude the contribution from

head/eye position or visual input. Examination of the weights in a

joint fit of all parameters together demonstrates that although the

contribution of locomotor speed is greater than any one individ-

ual positional parameter (Figure 4M), the summed weights of

head/eye positional parameters are still the largest contribution

(Figure 4N). It is also interesting to note that although head and

eye positions are often strongly correlated in the mouse due to

compensatory eye movements (Michaiel et al., 2020; Meyer

et al., 2020), the weights for each of these parameters are

roughly equal in the GLM fit that accounts for these correlations

(Figure 4M), demonstrating that both head and eye may

contribute independently to coding in V1 in addition to known

factors such as locomotion and arousal.

DISCUSSION

Nearly all studies of neural coding in vision have been performed

in subjects that are immobilized in someway, ranging from anes-

thesia to head and/or gaze fixation, which greatly limits the ability

to study the visual processing that occurs as an animal moves

through its environment. One important component of natural

movement is the integration of the incoming visual information

with one’s position relative to the scene. In order to determine

how individual neurons in the mouse V1 respond to visual input

and eye/head position, we implemented an integrated experi-

mental and model-based data analysis approach to perform vi-

sual physiological investigations in freely moving mice. Using

this approach, we demonstrate the ability to estimate spatiotem-

poral visual RFs during freemovement, show that individual neu-

rons have diverse tuning to head and eye position, and find that

these signals are often combined through a multiplicative

interaction.

Integration of visual input and eye/head position
The ongoing activity of many units in V1 was modulated by both

eye position and head orientation, as demonstrated by empirical

tuning curves (Figure 4B) and model-based prediction of neural

activity based on these parameters (Figure 4D). Modulation of

neural activity in V1 and other visual areas by eye position

(Weyand and Malpeli, 1993; Trotter and Celebrini, 1999; Rose-

nbluth and Allman, 2002; Durand et al., 2010; Andersen and

Mountcastle, 1983) and head orientation (Guitchounts et al.,

2020a, 2020b; Brotchie et al., 1995) has been observed across

rodents and primates, and fMRI evidence suggests that the hu-

man V1 encodes eye position (Merriam et al., 2013). Similar en-

coding of postural variables was also reported in the posterior

parietal cortex and secondary motor cortex using a GLM-based

approach (Mimica et al., 2018). Many of the position-tuned units

we observedwere also visually responsive, with clear spatiotem-

poral RFs.

In order to determine how these positional signals were inte-

grated with visual input, we used the GLM model trained on vi-

sual input only and incorporated either an additive or multiplica-

tive signal based on a linear model of the eye/head positional

parameters. For neurons that had both a significant visual and

positional component, we found that the majority were best

described by a multiplicative combination. This multiplicative
modulation corresponds to a gain field, a fundamental basis of

neural computation (Salinas and Abbott, 1996; Salinas and Sej-

nowski, 2001). Gain fields have been shown to serve a number of

roles, including providing an effective mechanism for coordinate

transformations as they enable the direct readout of additive or

subtractive combinations of input variables, such as the transfor-

mation from a retinotopic to egocentric position of a visual stim-

ulus. Studies in head-fixed primates have demonstrated gain

fields for eye position (Morris and Krekelberg, 2019; Andersen

and Mountcastle, 1983; Salinas and Sejnowski, 2001) and

head orientation (Brotchie et al., 1995) and similar gain modula-

tion for other factors such as attention (Salinas and Abbott,

1997). The demonstration of gain modulation by eye/head posi-

tion in freely movingmice shows that this mechanism is engaged

under natural conditions with complex movement.

Given the presence of gain fields in the mouse visual cortex,

two immediate questions arise: what are the sources of the po-

sitional signals and what are the cellular/circuit mechanisms that

give rise to the gain modulation? Regarding sources, evidence

suggests that eye positional signals arrive early in the visual sys-

tem, perhaps even at the level of the thalamic lateral geniculate

nucleus (Lal and Friedlander, 1990), while head orientation infor-

mation could be conveyed through the secondary motor cortex

(Guitchounts et al., 2020a, 2020b), retrosplenial cortex (Vélez-

Fort et al., 2018), or from neck muscle afferents (Crowell et al.,

1998). Regarding the mechanism, multiplicative interactions

have been suggested to arise from synaptic interactions,

including active dendritic integration, recurrent network interac-

tions, changes in input synchrony, balanced excitatory/inhibitory

modulatory inputs, and classic neuromodulators (Salinas and

Abbott, 1996; Salinas and Sejnowski, 2001; Silver, 2010). Future

research could take advantage of genetic methods available in

mice to determine the neural circuit mechanisms that implement

this computation (O’Connor et al., 2009; Niell and Scanziani,

2021; Luo et al., 2018).

This multiplicative interaction can also be viewed as a form of

nonlinear mixed selectivity, which has been shown to greatly

expand the discriminative capacity of a neural code (Rigotti

et al., 2013; Nogueira et al., 2021). The implications of nonlinear

mixed selectivity have primarily been explored in the context of

categorical variables rather than continuous variables as

observed here. In this context, it is interesting to note that a sig-

nificant number of units were nonetheless best described by an

additive interaction. In an additive interaction, the two signals are

linearly combined, providing a factorized codewhere each signal

can be read out independently. It may be that having a fraction of

neurons using this linear interaction provides flexibility by which

the visual input and position can be directly read out, along with

the nonlinear interaction that allows computations such as coor-

dinate transformations.

Methodological considerations
We estimated the visual input to the retina based on two head-

mounted cameras—one to determine the visual scene from the

mouse’s perspective and one to determine eye position and

thereby correct the head-based visual scene to account for

eye movements. Incorporation of eye position to correct the vi-

sual scene significantly improved the ability to estimate RFs
Neuron 110, 1–10, December 7, 2022 7
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and predict neural activity. Although head-fixed mice only make

infrequent eye movements, freely moving mice (and other ani-

mals) make continual eye movements that both stabilize gaze

by compensating for head movements and shift the gaze via

saccades (Michaiel et al., 2020; Meyer et al., 2020). As a result,

eye position can vary over a range of ±30� (theta std: 16.5�, phi
std: 17.8� in this study). Indeed, without eye movement correc-

tion many units did not have an estimated RF with predictive po-

wer (Figure 2F). Nonetheless, it is notable that some units were

robustly fit, even without correction, likely reflecting the fact

that the eye is still within a central location a large fraction of

the time (63%of time points within ±15� for theta, phi) and typical

RFs in themouse V1 are in the order of 10�–20� (Niell and Stryker,

2008; Van den Bergh et al., 2010).

We estimated spatiotemporal RFs and predicted neural activity

during free movement using a GLM—a standard model-based

approach in visual physiology (Pillow et al., 2008). Despite its

simplicity—it estimates the linear kernel of a cell’s response—

the GLM approach allowed us to estimate RFs in many neurons

(39% of freely moving RFs significantly matched head-fixed

white-noise RFs). These results are comparable to the fraction

of units with defined STA RFs measured in head-fixed mice

(64% of simple cells, 34% of the total population in Niell and

Stryker, 2008; 49% of the total population in Bonin et al., 2011).

The model fits were also able to predict a significant amount of

ongoing neural activity (cc mean = 0.29, max = 0.73). Although

this is still generally a small fraction of total activity, it is in line

with other studies (Carandini et al., 2005; de Vries et al., 2020)

and likely represents the role of additional visual features beyond

a linear kernel as well as other non-visual factors that modulate

neural activity (Musall et al., 2019; Stringer et al., 2019; Niell and

Stryker, 2010). A more elaborate model with nonlinear interac-

tions would likely do a better job of explaining activity in a larger

fraction of units; indeed, ‘‘complex’’ cells (Hubel and Wiesel,

1962) are not accurately described by a single linear kernel. How-

ever, for this initial characterization of RFs in freely moving ani-

mals, we chose to use the GLM because it is a well-established

method, a convex optimization guaranteed to reach a unique so-

lution, and the resultingmodel is easily interpretable as a linear RF

filter. The fact that even such a simple model can capture many

neurons’ responses both shows the robustness of the experi-

mental approach and opens up the possibility of usingmore elab-

orate and nonlinear models, such as multi-component (Butts,

2019) or deep neural networks (Walker et al., 2019; Ukita et al.,

2019; Bashivan et al., 2019). Implementation of such models

may require extensions to the experimental paradigm, such as

longer recording times to fit a greater number of parameters.

Freely moving visual physiology
Visual neuroscience is dominated by the use of head-restrained

paradigms inwhich the subject cannot move through the environ-

ment. As a result, many aspects of how vision operates in the nat-

ural world remain unexplored (Parker et al., 2020; Leopold and

Park, 2020). Indeed, the importance of movement led psycholo-

gist J.J. Gibson to consider the legs a component of the human

visual system, which provided the basis for his ecological

approach to visual perception (Gibson, 1979). The methods we

developed here can be applied more broadly to enable a Gibso-
8 Neuron 110, 1–10, December 7, 2022
nian approach to visual physiology that extends beyond features

that are present in standard head-fixed stimuli. Although natural

images and movies are increasingly used to probe the responses

of visual neurons in head-fixed conditions, these are still dramat-

ically different from the visual input received during free move-

ment through complex three-dimensional environments. This

includes cues resulting from self-motion during active vision,

such as motion parallax, loom, and optic flow, which can provide

information about the three-dimensional layout of the environ-

ment, distance, object speed, and other latent variables. Perform-

ing visual physiology investigations in a freelymoving subject may

facilitate the study of the computations underlying these features.

Accordingly, a resurgent interest in natural behaviors (Juavinett

et al., 2018; Datta et al., 2019; Dennis et al., 2021; Miller et al.,

2022) provides a variety of contexts in which to study visual com-

putations in themouse. However, studies of ethological visual be-

haviors typically rely on measurements of neural activity made

during head fixation rather than during the behavior itself (Hoy

et al., 2019; Boone et al., 2021). Performing visual physiology in

freely moving subjects is a powerful approach that ultimately

can enable the quantification of visual coding during ethological

tasks to determine the neural basis of natural behavior.
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uoregon.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All model data have been deposited at Data Dryad and are publicly available as of the date of publication. The DOI is listed in the

key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All procedures were conducted in accordance with the guidelines of the National Institutes of Health and were approved by the Uni-

versity of Oregon Institutional Animal Care and Use Committee. Three- to eight-month old adult mice (C57BL/6J, Jackson Labora-

tories and bred in-house) were kept on a 12 h light/dark cycle. In total, 4 female and 3male mice were used for this study (head-fixed/

freely moving: 2 females, 2 males; light/dark: 3 females, 2 males).

METHOD DETAILS

Surgery and habituation
Mice were initially implanted with a steel headplate over primary visual cortex to allow for head-fixation and attachment of head-

mounted experimental hardware. After three days of recovery, widefield imaging (Wekselblatt et al., 2016) was performed to help

target the electrophysiology implant to the approximate center of left monocular V1. A miniature connector (Mill-Max 853-93-100-

10-001000) was secured to the headplate to allow attachment of a camera arm (eye/world cameras and IMU; Michaiel et al.,

2020). In order to simulate the weight of the real electrophysiology drive and camera system for habituation (6 g total), a ‘dummy’

systemwas glued to the headplate. Animals were handled by the experimenter for several days before surgical procedures, and sub-

sequently habituated (�45 min) to the spherical treadmill and freely moving arena with hardware tethering attached for several days

before experiments.

The electrophysiology implant was performed once animalsmoved comfortably in the arena. A craniotomywas performed over V1,

and a linear silicon probe (64 or 128 channels, Diagnostic Biochips P64-3 or P128-6) mounted in a custom 3D-printed drive (Yuta

Senzai, UCSF) was lowered into the brain using a stereotax to an approximate tip depth of 750 mm from the pial surface. The surface

of the craniotomy was coated in artificial dura (Dow DOWSIL 3–4680) and the drive was secured to the headplate using light-curable

dental acrylic (Unifast LC). A second craniotomy was performed above left frontal cortex, and a reference wire was inserted into the

brain. The opening was coated with a small amount of sterile ophthalmic ointment before the wire was glued in place with cyanoac-

rylate. Animals recovered overnight and experiments began the following day.

Hardware and recording
The camera arm was oriented approximately 90 deg to the right of the nose and included an eye-facing camera (iSecurity101

1000TVLNTSC, 30 fps interlaced), an infrared-LED to illuminate the eye (Chanzon, 3mmdiameter, 940 nmwavelength), a wide-angle

camera oriented toward the mouse’s point of view (BETAFPV C01, 30 fps interlaced) and an inertial measurement unit acquiring

three-axis gyroscope and accelerometer signals (Rosco Technologies; acquired 30 kHz, downsampled to 300 Hz and interpolated
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to camera data). Fine gaugewire (Cooner, 36 AWG, #CZ1174CLR) connected the IMU to its control box, and each of the cameras to a

USB video capture device (Pinnacle Dazzle or StarTech USB3HDCAP). A top-down camera (FLIR Blackfly USB3, 60 fps) recorded

the mouse in the arena. The electrophysiology headstage (built into the silicon probe package) was connected to an OpenEphys

acquisition system via an ultra thin cable (Intan #C3216). The electrophysiology cable was looped over a computer mouse bungee

(Razer) to reduce the combined impact of the cable and implant. We first used the OpenEphys GUI (https://open-ephys.org/gui) to

assess the quality of the electrophysiology data, then recordings were performed in Bonsai (Lopes et al., 2015) using custom work-

flows. System timestamps were collected for all hardware devices and later used to align data streams through interpolation.

During experiments, animals were first head-fixed on a spherical treadmill to permit measurement of visual receptive fields using

traditional methods, then were transferred to an arena where they could freely explore. Recording duration was approximately 45mi-

nutes head-fixed, and 1hr freely moving. For head-fixed experiments, a 27.5 in monitor (BenQ GW2780) was placed approximately

27.5 cm from the mouse’s right eye. A contrast-modulated white noise stimulus (Niell and Stryker, 2008) was presented for 15 min,

followed by additional visual stimuli, and themouse was thenmoved to the arena. The arena was approximately 48 cm long by 37 cm

wide by 30 cm high. A 24 in monitor (BenQ GW2480) covered one wall of the arena, while the other three walls were clear acrylic

covering custom wallpaper including black and white high- and low-spatial frequency gratings and white noise. A moving black

and white spots stimulus (Piscopo et al., 2013) played continuously on the monitor while the mouse was in the arena. The floor

was a gray silicone mat (Gartful) and was densely covered with black and white Legos. Small pieces of tortilla chips (Juanita’s)

were lightly scattered around the arena to encourage foraging during the recording, however animals were not water or food

restricted.

Data preprocessing
Electrophysiology data were acquired at 30 kHz and bandpass filtered between 0.01 Hz and 7.5 kHz. Common-mode noise was

removed by subtracting the median across all channels at each timepoint. Spike sorting was performed using Kilosort 2.5 (Steinmetz

et al., 2021), and isolated single units were then selected using Phy2 (https://github.com/cortex-lab/phy) based on a number of pa-

rameters including contamination (<10%), firing rate (mean >0.5 Hz across entire recording), waveform shape, and autocorrelogram.

Electrophysiology data for an entire session were concatenated (head fixed stimulus presentation, freely moving period, or freely

moving light and dark) and any sessions with apparent drift across the recording periods (based on Kilosort drift plots) were dis-

carded. To check for drift between head-fixed and freely moving recordings, we compared the mean waveforms and noise level

for each unit across the two conditions, based on a 2 ms window around the identified spike times in bandpass-filtered data

(800-8000Hz). An example mean waveform, with its standard deviation across individual spike times, is shown in Figure S1A. To

determine whether the waveform changed, indicative of drift, we calculated coefficient of determination (R2) between the two

mean waveforms for each unit, which confirms a high degree of stability as the waveforms are nearly identical across conditions (Fig-

ure S1B). To determine whether the noise level changed, we computed the standard deviation across spike occurrences within each

condition, for each unit (Figure S1C). There was no change in this metric between head-fixed and freely moving, indicating that there

was not a change in noise level that might disrupt spike sorting in one condition specifically.

World and eye camera data were first deinterlaced to achieve 60 fps video. Theworld camera frameswere then undistorted using a

checkerboard calibration procedure (Python OpenCV), and downsampled to 30 by 40 pixels to reduce dimensionality and approx-

imate mouse visual acuity. In order to extract pupil position from the eye video, eight points around the pupil were tracked with

DeepLabCut (Mathis et al., 2018). We then fit these eight points to an ellipse and computed pupil position in terms of angular rotation

(Michaiel et al., 2020). Sensor fusion analysis was performed on the IMU data (Jonny Saunders, University of Oregon) to calculate

pitch and roll of the head. Pitch and roll were then passed through a median filter with window size 550 ms. All data streams were

aligned to 50 ms bins through interpolation using system timestamps acquired in Bonsai.

GLM training
For all model fits, the data were partitioned into 10% groups, and were randomly sampled into cross-validation train and test sets

(70%/30% split, respectively). Video frames were cropped by 5 pixels on each side to remove edge artifacts. Initially, a shifter

network was trained on each recording session (see below) to estimate the appropriate horizontal shift, vertical shift, and rotation

of the world camera video to correct for eye movements. The corrected eye camera data were then saved out and used for training.

Eye and head position were z-scored and zero-centered before training and analysis. Four different networks were trained: 1) Eye

position and head orientation signals only, 2) Visual input only, 3) Additive interaction between position and visual input, and 4) Mul-

tiplicative interaction between position and visual input. Units with a mean firing rate below 1 Hz in either head-fixed or freely moving

were removed from the data set (17% of total units).

Network parameters
To train themodel end-to-end and to speed up the computation we utilized the graphical processing unit (GPU) and pyTorch because

the GLM is equivalent to a single-layer linear network. We then used a rectified linear activation function to approximate non-zero

firing rates. Utilizing the GPU decreased training time for the model by multiple orders of magnitude (from over 500 hours down to

40 minutes for the entire dataset). L1 and L2 regularization was applied to the spatiotemporal filters of the visual model. The

Adam optimization algorithm (Kingma and Ba, 2014) was used to update the parameters of the model to minimize prediction error.
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The loss and gradient of each neuron were computed independently in parallel so the full model represents the entire dataset. To

account for the convergence of different parameters at different speeds as well as to isolate parameters for regularization, parameter

groups were established within the optimizer with independent hyperparameters.

Shifter network
In order to correct the world camera video for eyemovements, we trained a shifter network to convert eye position and torsion into an

affine transformation of the image at each time point. For each recording session, eye angle and head pitch (theta, phi, and rho) were

used as input into a feedforward network with a hidden layer of size 50, and output representing horizontal shift, vertical shift, and

image rotation. The output of the network was then used to perform a differentiable affine transformation (Riba et al., 2019) to correct

for eye movements. Head pitch was used as a proxy of eye torsion (Wallace et al., 2013), and eye position was zero-centered based

on the mean position during the freely moving condition. The transformed image was then used as input into the GLM network to

predict the neural activity. The shifter network and GLM were then trained together to minimize the error in predicted neural activity.

During the shifter training (2000 epochs) no L1 regularization was applied to ensure a converged fit. Horizontal and vertical shift was

capped at 20 pixels and rotation was capped at 45 deg. The eye corrected videos were saved out to be used for the model compar-

ison training. The shifter network was trained on freely moving data, since eye movements are greatly reduced during head-fixation,

but was applied to both head-fixed and freely moving data to align receptive fields across the two conditions.

Tuning and gain curves
Tuning curves for eye and head position were generated by binning the firing rates into quartiles so the density of each point is equal

and then taking the average. For each gain curvewe collected the time points of the firing rates that werewithin each quartile range for

eye and head position, averaged the firing rates and then compared them with the predicted firing rates from the visual-only model.

Each curve therefore represents how much each unit’s actual firing rate changed on average when the mouse’s eye or head was in

the corresponding position.

Position-only model fits
Eye and head position signals were used as input into a single-layer network where the input dimension was four and the output

dimension was the number of neurons. No regularization was applied during training due to the small number of parameters needed

for the fitting. The learning rate for the weights and biases was 1e-3.

Visual-only model fits
Eye corrected world camera videos were used as input into the GLM network. The weights from the shifter training for each neuron

were used as the initialization condition for theweights, while themean firing rates of the neurons were used as the initialization for the

biases. Parameters for the model were fit over 10,000 epochs with a learning rate of 1e-3. To prevent overfitting, a regularization

sweep of 20 values log-base 10 distributed between 0.001 to 100 was performed. The model weights with the lowest test error

were selected for each neuron.

Joint visual-position model fits
After the visual-only fits, the spatiotemporal weights and biases were frozen. A position module was then added to the model for

which the input was the eye and head position signals (see Figure 4G). The output of the visual module was then combined with

output of the position module in either an additive or multiplicative manner, then sent through a ReLu nonlinearity to approximate

firing rates. The parameters for the position module were then updated with the Adam optimizer with learning rate 1e-3.

Speed and pupil diameter fits
To test the contribution of the speed and pupil diameter, the data were first z-scored and GLM fits were conducted with only speed

and pupil, with eye/head position only and with speed, pupil and eye/head position. All models were fit with cross-validation with the

same train/test split parameters as above. The explained variance (r2) of the predicted and actual firing rate was calculated between

these models to show how these parameters contribute uniquely and sublinearly to the GLM fits. Additionally, we trained the joint fits

with eye/head position and speed and pupil and calculated the total contribution of eye/head position versus speed and pupil

(Figures 4L–4N).

Post-training analysis
To better assess the quality of fits, the actual and output firing rates were smoothed with a boxcar filter with a 2 s window. The cor-

relation coefficient (cc) was then calculated between smoothed actual and predicted firing rates of the test dataset. The modulation

index of neural activity by position was calculated as the (max-min)/(max+min) of each signal. In order to distinguish between additive

and multiplicative models (Figures 4J and 4K), a unit needs to have a good positional and visual fit. As a result, units which had an cc

value below 0.22, or did not improve with incorporating position information were thresholded out for the final comparison.
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Simulated RF reconstruction
We tested the ability of our GLM approach to recover accurate receptive fields using simulated data. Simulated RFs were created

based on Gabor functions and applied to the eye movement-corrected world camera video as a linear filter to generate simulated

neural activity, scaled to empirically match the firing rates of real neurons with an average firing rate of 14 Hz. The output was

then passed through a Poisson process to generate binned spike counts. Using these simulated data, we then followed the same

analysis as for real data to fit a visual GLMmodel and estimate RFs, using spatiotemporal weights set to zero for the initial conditions.

Test-retest analysis receptive fields
To assess how reliable the receptive fields were, we trained the GLM separately on the first and second half of each recording ses-

sion.We then took the receptive fields that weremapped for each half and calculated the pixel-wise correlation coefficient (Figure S3).

A threshold of 0.5 cc was then used as a metric for stable RFs within the same condition. The units that had a stable RF in both head-

fixed and freely moving conditions were then used for the analysis in Figure 3.

Shifter controls and change in visual scene
Similar to the test-retest for receptive fields, we trained the shifter network on the first and second half of the data. Shifter matrices

were created using a grid of eye and head angles after training to see how the network responds to different angles. The coefficient of

determination (R2) was then calculated between the shifter matrices of the first and second half (Figures S2A–S2C). To further quan-

tify the effect of the shifter network we used frame to frame image registration to measure the visual stability of the world camera

video. Displacement between consecutive images was based on image registration performed with findTransformECC function in

OpenCV. We computed the cumulative sum of shifts to get total displacement, then calculated standard deviation in the fixation in-

tervals following analysis in Michaiel et al. (2020).

Dark experiments and analysis
To eliminate all possible light within the arena, the entire behavioral enclosure was sealed in light-blocking material (Thorlabs BK5), all

potential light sourceswithin the enclosure were removed, and the room lights were turned off. Animals were first recorded in the dark

(�20min), then the arena lights andwall stimulusmonitor were turned on (�20min). As a result of the dark conditions, the pupil dilated

beyond the margins of the eyelids, which made eye tracking infeasible. To counteract this, prior to the experiment, one drop of 2%

Pilocarpine HCl Ophthalmic Solution was applied to the animal’s right eye to restrict the pupil to a size similar to that seen in the light.

Once the pupil was restricted enough for tracking in the dark (�3min) the animal wasmoved into the dark arena for recording, until the

effects of the Pilocarpine wore off (�20 min), at which time the light recording began. Tuning curves for eye and head position were

generated using the samemethod as in the light by binning the firing rates into quartiles so the density of each point is equal and then

taking the average.

QUANTIFICATION AND STATISTICAL ANALYSIS

For shuffle distributions, we randomly shuffled spike timeswithin the cross-validated train and test sets and then performed the same

GLM training procedure. We defined significant values as two standard deviations away from themean of the shuffle distribution. For

paired t-tests, we first averaged across units within a session, then performed the test across sessions.
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